13.3 The Ideal Gas Law - College Physics 2e | OpenStax (2024)

Learning Objectives

By the end of this section, you will be able to:

  • State the ideal gas law in terms of molecules and in terms of moles.
  • Use the ideal gas law to calculate pressure change, temperature change, volume change, or the number of molecules or moles in a given volume.
  • Use Avogadro’s number to convert between number of molecules and number of moles.
13.3 The Ideal Gas Law - College Physics 2e | OpenStax (1)

Figure 13.17 The air inside this hot air balloon flying over Putrajaya, Malaysia, is hotter than the ambient air. As a result, the balloon experiences a buoyant force pushing it upward that is larger than its weight. (credit: Kevin Poh, Flickr)

In this section, we continue to explore the thermal behavior of gases. In particular, we examine the characteristics of atoms and molecules that compose gases. (Most gases, for example nitrogen, N2N2, and oxygen, O2O2, are composed of two or more atoms. We will primarily use the term “molecule” in discussing a gas, but note that this discussion also applies to monatomic gases, such as helium.)

Gases are easily compressed. We can see evidence of this in Table 13.2, where you will note that gases have the largest coefficients of volume expansion. The large coefficients mean that gases expand and contract very rapidly with temperature changes. In addition, you will note that most gases expand at the same rate, or have the same ββ. This raises the question as to why gases should all act in nearly the same way, when liquids and solids have widely varying expansion rates.

The answer lies in the large separation of atoms and molecules in gases, compared to their sizes, as illustrated in Figure 13.18. Because atoms and molecules have large separations, forces between them can be ignored, except when they collide with each other during collisions. The motion of atoms and molecules (at temperatures well above the boiling temperature) is fast, such that the gas occupies all of the accessible volume and the expansion of gases is rapid. In contrast, in liquids and solids, atoms and molecules are closer together and are quite sensitive to the forces between them.

13.3 The Ideal Gas Law - College Physics 2e | OpenStax (2)

Figure 13.18 Atoms and molecules in a gas are typically widely separated, as shown. Because the forces between them are quite weak at these distances, the properties of a gas depend more on the number of atoms per unit volume and on temperature than on the type of atom.

To get some idea of how pressure, temperature, and volume of a gas are related to one another, consider what happens when you pump air into an initially deflated tire. The tire’s volume first increases in direct proportion to the amount of air injected, without much increase in the tire pressure. Once the tire has expanded to nearly its full size, the walls limit volume expansion. If we continue to pump air into it, the pressure increases. The pressure will further increase when the car is driven and the tires move. Most manufacturers specify optimal tire pressure for cold tires. (See Figure 13.19.)

13.3 The Ideal Gas Law - College Physics 2e | OpenStax (3)

Figure 13.19 (a) When air is pumped into a deflated tire, its volume first increases without much increase in pressure. (b) When the tire is filled to a certain point, the tire walls resist further expansion and the pressure increases with more air. (c) Once the tire is inflated, its pressure increases with temperature.

In many common circ*mstances, including, for example, room temperature air, the gas particles have negligible volume and do not interact with each other, aside from perfectly elastic collisions. In such cases, the gas is called an ideal gas, and the relationship between the pressure, volume, and temperature is given by the equation called the ideal gas law. An equation such as the ideal gas law, which relates behavior of a physical system in terms of its thermodynamic properties, is called an equation of state.

Ideal Gas Law

The ideal gas law states that

PV=NkT,PV=NkT,

13.18

where PP is the absolute pressure of a gas, VV is the volume it occupies, NN is the number of atoms and molecules in the gas, and TT is its absolute temperature. The constant kk is called the Boltzmann constant in honor of Austrian physicist Ludwig Boltzmann (1844–1906) and has the value

k=1.38×1023 J/K.k=1.38×1023 J/K.

13.19

The ideal gas law can be derived from basic principles, but was originally deduced from experimental measurements of Charles’ law (that volume occupied by a gas is proportional to temperature at a fixed pressure) and from Boyle’s law (that for a fixed temperature, the product PVPV is a constant). In the ideal gas model, the volume occupied by its atoms and molecules is a negligible fraction of VV. The ideal gas law describes the behavior of real gases under most conditions. (Note, for example, that NN is the total number of atoms and molecules, independent of the type of gas.)

Let us see how the ideal gas law is consistent with the behavior of filling the tire when it is pumped slowly and the temperature is constant. At first, the pressure PP is essentially equal to atmospheric pressure, and the volume VV increases in direct proportion to the number of atoms and molecules NN put into the tire. Once the volume of the tire is constant, the equation PV=NkTPV=NkT predicts that the pressure should increase in proportion to the number N of atoms and molecules.

Example 13.6

Calculating Pressure Changes Due to Temperature Changes: Tire Pressure

Suppose your bicycle tire is fully inflated, with an absolute pressure of 7.00×105 Pa7.00×105 Pa (a gauge pressure of just under 90.0lb/in290.0lb/in2) at a temperature of 18.0ºC18.0ºC. What is the pressure after its temperature has risen to 35.0ºC35.0ºC? Assume that there are no appreciable leaks or changes in volume.

Strategy

The pressure in the tire is changing only because of changes in temperature. First we need to identify what we know and what we want to know, and then identify an equation to solve for the unknown.

We know the initial pressure P0=7.00×105 PaP0=7.00×105 Pa, the initial temperatureT0=18.0ºCT0=18.0ºC, and the final temperatureTf=35.0ºCTf=35.0ºC. We must find the final pressurePfPf. How can we use the equationPV=NkTPV=NkT? At first, it may seem that not enough information is given, because the volumeVV and number of atomsNN are not specified. What we can do is use the equation twice:P0V0=NkT0P0V0=NkT0 andPfVf=NkTfPfVf=NkTf. If we dividePfVfPfVf byP0V0P0V0 we can come up with an equation that allows us to solve forPfPf.

P f V f P 0 V 0 = N f kT f N 0 kT 0 P f V f P 0 V 0 = N f kT f N 0 kT 0

13.20

Since the volume is constant, VfVf and V0V0 are the same and they cancel out. The same is true for NfNf and N0N0, and kk, which is a constant. Therefore,

P f P 0 = T f T 0 . P f P 0 = T f T 0 .

13.21

We can then rearrange this to solve for PfPf:

P f = P 0 T f T 0 , P f = P 0 T f T 0 ,

13.22

where the temperature must be in units of kelvins, because T0T0 and TfTf are absolute temperatures.

Solution

1. Convert temperatures from Celsius to Kelvin.

T 0 = 18 . 0 + 273 K = 291 K T f = 35 . 0 + 273 K = 308 K T 0 = 18 . 0 + 273 K = 291 K T f = 35 . 0 + 273 K = 308 K

13.23

2. Substitute the known values into the equation.

P f = P 0 T f T 0 = 7 . 00 × 10 5 Pa 308 K 291 K = 7 . 41 × 10 5 Pa P f = P 0 T f T 0 = 7 . 00 × 10 5 Pa 308 K 291 K = 7 . 41 × 10 5 Pa

13.24

Discussion

The final temperature is about 6% greater than the original temperature, so the final pressure is about 6% greater as well. Note that absolute pressure and absolute temperature must be used in the ideal gas law.

Making Connections: Take-Home Experiment—Refrigerating a Balloon

Inflate a balloon at room temperature. Leave the inflated balloon in the refrigerator overnight. What happens to the balloon, and why?

Example 13.7

Calculating the Number of Molecules in a Cubic Meter of Gas

How many molecules are in a typical object, such as air in a tire? We can use the ideal gas law to give us an idea of how large NN typically is.

Calculate the number of molecules in a cubic meter of air at standard temperature and pressure (STP), which is defined to be 0ºC0ºC and atmospheric pressure.

Strategy

Because pressure, volume, and temperature are all specified, we can use the ideal gas law PV=NkTPV=NkT, to find NN.

Solution

1. Identify the knowns.

T = 0 º C = 273 K P = 1 . 01 × 10 5 Pa V = 1 . 00 m 3 k = 1 . 38 × 10 23 J/K T = 0 º C = 273 K P = 1 . 01 × 10 5 Pa V = 1 . 00 m 3 k = 1 . 38 × 10 23 J/K

13.25

2. Identify the unknown: number of molecules, NN.

3. Rearrange the ideal gas law to solve for NN.

PV = NkT N = PV kT PV = NkT N = PV kT

13.26

4. Substitute the known values into the equation and solve for NN.

N = PV kT = 1 . 01 × 10 5 Pa 1 . 00 m 3 1 . 38 × 10 23 J/K 273 K = 2 . 68 × 10 25 molecules N = PV kT = 1 . 01 × 10 5 Pa 1 . 00 m 3 1 . 38 × 10 23 J/K 273 K = 2 . 68 × 10 25 molecules

13.27

Discussion

This number is undeniably large, considering that a gas is mostly empty space. NN is huge, even in small volumes. For example, 1 cm31 cm3 of a gas at STP has 2.68×10192.68×1019 molecules in it. Once again, note that NN is the same for all types or mixtures of gases.

Moles and Avogadro’s Number

It is sometimes convenient to work with a unit other than molecules when measuring the amount of substance. A mole (abbreviated mol) is defined to be the amount of a substance that contains as many atoms or molecules as there are atoms in exactly 12 grams (0.012 kg) of carbon-12. The actual number of atoms or molecules in one mole is called Avogadro’s number(NA)(NA), in recognition of Italian scientist Amedeo Avogadro (1776–1856). He developed the concept of the mole, based on the hypothesis that equal volumes of gas, at the same pressure and temperature, contain equal numbers of molecules. That is, the number is independent of the type of gas. This hypothesis has been confirmed, and the value of Avogadro’s number is

N A = 6 . 02 × 10 23 mol 1 . N A = 6 . 02 × 10 23 mol 1 .

13.28

Avogadro’s Number

One mole always contains 6.02×10236.02×1023 particles (atoms or molecules), independent of the element or substance. A mole of any substance has a mass in grams equal to its molecular (molar) mass, which can be calculated by multiplying the number of moles of the substance by its atomic mass. The atomic masses of elements are given in the periodic table of elements and in Appendix A

N A = 6 . 02 × 10 23 mol 1 N A = 6 . 02 × 10 23 mol 1

13.29

13.3 The Ideal Gas Law - College Physics 2e | OpenStax (4)

Figure 13.20 How big is a mole? On a macroscopic level, one mole of table tennis balls would cover the Earth to a depth of about 40 km.

Check Your Understanding

The active ingredient in a Tylenol pill is 325 mg of acetaminophen (C8H9NO2)(C8H9NO2). Find the molar mass of acetaminophen, and from this, the number of moles and the number of molecules of acetaminophen in a single pill.

Solution

We first need to calculate the molar mass (the mass of one mole) of acetaminophen. To do this, we need to multiply the number of atoms of each element by the element’s atomic mass.

( 8 moles of carbon ) ( 12 grams/mole ) + ( 9 moles hydrogen ) ( 1 gram/mole ) + ( 1 mole nitrogen ) ( 14 grams/mole ) + ( 2 moles oxygen ) ( 16 grams/mole ) = 151 g ( 8 moles of carbon ) ( 12 grams/mole ) + ( 9 moles hydrogen ) ( 1 gram/mole ) + ( 1 mole nitrogen ) ( 14 grams/mole ) + ( 2 moles oxygen ) ( 16 grams/mole ) = 151 g

13.30

Then we need to calculate the number of moles in 325 mg.

325 mg 151 grams/mole 1 gram 1000 mg = 2.15 × 10 3 moles 325 mg 151 grams/mole 1 gram 1000 mg = 2.15 × 10 3 moles

13.31

Then use Avogadro’s number to calculate the number of molecules.

N = 2.15 × 10 3 moles 6.02 × 10 23 molecules/mole = 1.30 × 10 21 molecules N = 2.15 × 10 3 moles 6.02 × 10 23 molecules/mole = 1.30 × 10 21 molecules

13.32

Example 13.8

Calculating Moles per Cubic Meter and Liters per Mole

Calculate: (a) the number of moles in 1.00 m31.00 m3 of gas at STP, and (b) the number of liters of gas per mole at STP.

Strategy and Solution

(a) We are asked to find the number of moles per cubic meter, and we know from Example 13.7 that the number of molecules per cubic meter at STP is 2.68×10252.68×1025. The number of moles can be found by dividing the number of molecules by Avogadro’s number. We let nn stand for the number of moles,

n mol/m 3 = N molecules/m 3 6 . 02 × 10 23 molecules/mol = 2 . 68 × 10 25 molecules/m 3 6 . 02 × 10 23 molecules/mol = 44 . 5 mol/m 3 . n mol/m 3 = N molecules/m 3 6 . 02 × 10 23 molecules/mol = 2 . 68 × 10 25 molecules/m 3 6 . 02 × 10 23 molecules/mol = 44 . 5 mol/m 3 .

13.33

(b) Using the value obtained for the number of moles in a cubic meter, and converting cubic meters to liters, we obtain

10 3 L/m 3 44 . 5 mol/m 3 = 22 . 5 L/mol . 10 3 L/m 3 44 . 5 mol/m 3 = 22 . 5 L/mol .

13.34

Discussion

This value is very close to the accepted value of 22.4 L/mol. The slight difference is due to rounding errors caused by using three-digit input. Again this number is the same for all gases. In other words, it is independent of the gas.

The (average) molar weight of dry air (approximately 80% N2N2 and 20% O2O2) at STP is M=28.8g/mol.M=28.8g/mol. Thus the mass of one cubic meter of air is 1.28 kg. The density of dry room temperature air is about 10% lower. If a living room has dimensions 5 m×5 m×3 m,5 m×5 m×3 m, the mass of air inside the room is around 90 kg, which is the typical mass of a human.

Check Your Understanding

The density of air at standard conditions (P=1atm(P=1atm and T=20ºC)T=20ºC) is 1.20 kg/m31.20 kg/m3. At what pressure is the density 0.60kg/m30.60kg/m3 if the temperature and number of molecules are kept constant?

Solution

The best way to approach this question is to think about what is happening. If the density drops to half its original value and no molecules are lost, then the volume must double. If we look at the equation PV=NkTPV=NkT, we see that when the temperature is constant, the pressure is inversely proportional to volume. Therefore, if the volume doubles, the pressure must drop to half its original value, and Pf=0.50 atm.Pf=0.50 atm.

The Ideal Gas Law Restated Using Moles

A very common expression of the ideal gas law uses the number of moles, nn, rather than the number of atoms and molecules, NN. We start from the ideal gas law,

PV=NkT,PV=NkT,

13.35

and multiply and divide the equation by Avogadro’s number NANA. This gives

PV = N N A N A kT . PV = N N A N A kT .

13.36

Note that n=N/NAn=N/NA is the number of moles. We define the universal gas constant R=NAkR=NAk, and obtain the ideal gas law in terms of moles.

Ideal Gas Law (in terms of moles)

The ideal gas law (in terms of moles) is

PV=nRT.PV=nRT.

13.37

The numerical value of RR in SI units is

R=NAk=6.02×1023mol11.38×1023J/K=8.31J/(molK).R=NAk=6.02×1023mol11.38×1023J/K=8.31J/(molK).

13.38

In other units,

R = 1.99 cal/(mol K) R = 0.0821 L atm/(mol K). R = 1.99 cal/(mol K) R = 0.0821 L atm/(mol K).

13.39

You can use whichever form of RR is most convenient for a particular problem.

Example 13.9

Calculating Number of Moles: Gas in a Bike Tire

How many moles of gas are in a bike tire with a volume of 2.00×103m3(2.00 L),2.00×103m3(2.00 L), a pressure of 7.00×105Pa7.00×105Pa (a gauge pressure of just under 90.0lb/in290.0lb/in2), and at a temperature of 18.0ºC18.0ºC?

Strategy

Identify the knowns and unknowns, and choose an equation to solve for the unknown. In this case, we solve the ideal gas law, PV=nRTPV=nRT, for the number of moles nn.

Solution

1. Identify the knowns.

P = 7 . 00 × 10 5 Pa V = 2 . 00 × 10 3 m 3 T = 18 . 0 º C = 291 K R = 8 . 31 J/mol K P = 7 . 00 × 10 5 Pa V = 2 . 00 × 10 3 m 3 T = 18 . 0 º C = 291 K R = 8 . 31 J/mol K

13.40

2. Rearrange the equation to solve for nn and substitute known values.

n = PV RT = 7 . 00 × 10 5 Pa 2 . 00 × 10 3 m 3 8 . 31 J/mol K 291 K = 0 . 579 mol n = PV RT = 7 . 00 × 10 5 Pa 2 . 00 × 10 3 m 3 8 . 31 J/mol K 291 K = 0 . 579 mol

13.41

Discussion

The most convenient choice for RR in this case is 8.31 J/molK,8.31 J/molK, because our known quantities are in SI units. The pressure and temperature are obtained from the initial conditions in Example 13.6, but we would get the same answer if we used the final values.

The ideal gas law can be considered to be another manifestation of the law of conservation of energy (see Conservation of Energy). Work done on a gas results in an increase in its energy, increasing pressure and/or temperature. This increased energy can also be viewed as increased internal kinetic energy, given the gas’s atoms and molecules.

The Ideal Gas Law and Energy

Let us now examine the role of energy in the behavior of gases. When you inflate a bike tire by hand, you do work by repeatedly exerting a force through a distance. This energy goes into increasing the pressure of air inside the tire and increasing the temperature of the pump and the air.

The ideal gas law is closely related to energy: the dimensions on both sides are those of energy, with units of joules when using SI units. The right-hand side of the ideal gas law in PV=NkTPV=NkT is NkTNkT. This term is proportional to the amount of translational kinetic energy of NN atoms or molecules at an absolute temperature TT, as we shall see formally in Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature. The left-hand side of the ideal gas law is PVPV, which also has the units of joules. Pressure is force per unit area, so pressure multiplied by volume is force times displacement, or energy. The important point is that there is energy in a gas related to both its pressure and its volume. The energy can be changed when the gas is doing work as it expands—something we explore in Heat and Heat Transfer Methods—similar to what occurs in gasoline or steam engines and turbines.

Problem-Solving Strategy: The Ideal Gas Law

Step 1 Examine the situation to determine that an ideal gas is involved. Most gases are nearly ideal.

Step 2 Make a list of what quantities are given, or can be inferred from the problem as stated (identify the known quantities). Convert known values into proper SI units (K for temperature, Pa for pressure, m3m3 for volume, molecules for NN, and moles for nn).

Step 3 Identify exactly what needs to be determined in the problem (identify the unknown quantities). A written list is useful.

Step 4 Determine whether the number of molecules or the number of moles is known, in order to decide which form of the ideal gas law to use. The first form is PV=NkTPV=NkT and involves NN, the number of atoms or molecules. The second form is PV=nRTPV=nRT and involves nn, the number of moles.

Step 5 Solve the ideal gas law for the quantity to be determined (the unknown quantity). You may need to take a ratio of final states to initial states to eliminate the unknown quantities that are kept fixed.

Step 6 Substitute the known quantities, along with their units, into the appropriate equation, and obtain numerical solutions complete with units. Be certain to use absolute temperature and absolute pressure.

Step 7 Check the answer to see if it is reasonable: Does it make sense?

Check Your Understanding

Liquids and solids have densities about 1000 times greater than gases. Explain how this implies that the distances between atoms and molecules in gases are about 10 times greater than the size of their atoms and molecules.

Solution

Atoms and molecules are close together in solids and liquids. In gases they are separated by empty space. Thus gases have lower densities than liquids and solids. Density is mass per unit volume, and volume is related to the size of a body (such as a sphere) cubed. So if the distance between atoms and molecules increases by a factor of 10, then the volume occupied increases by a factor of 1000, and the density decreases by a factor of 1000.

13.3 The Ideal Gas Law - College Physics 2e | OpenStax (2024)

FAQs

What is the ideal gas law Physics 2? ›

The ideal gas law states that the product of the pressure and the volume of one gram molecule of an ideal gas is equal to the product of the absolute temperature of the gas and the universal gas constant.

What is the Charles Law of Openstax? ›

Charles's law states that the volume of a given amount of gas is directly proportional to its temperature on the kelvin scale when the pressure is held constant.

What is the principle in hot air balloons by using the ideal gas equation of state? ›

As the air continues to heat up, it expands, according to Charles' Law: V∝kT . The balloon has a fixed volume, so the extra volume flows out of the hole in the bottom of the balloon. We can rearrange the Ideal Gas Law, PV=nRT , to calculate the density ρ of the hot air.

What is the value of the gas constant R? ›

The gas constant R is 8.314 J / mol·K. Convert the numerical value of R so that its units are cal / (mol·K). A unit conversion table will tell you that 1 cal = 4.184 J. Make sure you know where to find it.

How to use the ideal gas law formula? ›

Using the Ideal Gas Law Vocabulary and Equations

P V = n R T In this equation, P is the pressure of the gas, V is the volume, n is the number of moles, and T is the temperature of the gas. R is the "ideal gas constant." Ideal Gas Constant: The ideal gas constant is a physical constant used in the ideal gas law.

What is the answer to the ideal gas law? ›

The ideal gas law states that PV = NkT, where P is the absolute pressure of a gas, V is the volume it occupies, N is the number of atoms and molecules in the gas, and T is its absolute temperature.

Is OpenStax legal? ›

The entire library of OpenStax textbooks is published under a Creative Commons license. This means that you are free to distribute, remix, adapt and translate OpenStax content. It is required that you include an attribution that gives credit to OpenStax and connects students to the free online format of that textbook.

Which equation agrees with the ideal gas law? ›

The ideal gas law (PV = nRT)

What variables do the gas laws explain their relationship? ›

The Individual Gas Laws

Pressure (P), volume (V), number of moles (n), and temperature (T) are the four variables required to define the physical condition of a gas. The individual gas laws describe the relationship between two of the four gas law variables, given that the remaining two variables are held constant.

Is a balloon an example of ideal gas law? ›

The ideal gas law equation tells us that the pressure of the air in the balloon will increase. The increase is momentary though. You can use the same reasoning to understand what happens when you cool the air in a balloon. The air inside and outside are the same in Fig.

Which ideal gas law explain why the balloons popped? ›

Here p is a pressure and V is a volume of an ideal gas. When you sit on a balloon you decrease the volume . Therefore, the pressure must increase and, when it is too high, the balloon cannot hold it anymore and pops. The above law is named Boyle's Law.

Is 0.0821 always R? ›

The ideal gas constant, also known as the molar gas constant, is expressed as R within the formula for the ideal gas law, PV=nRT. The ideal gas constant is the same for all gases but can vary based on which units are being used, the most common expressions are R = 0.0821 (L • atm/ mol • K) OR R = 8.31 (J/ mol • K).

How do I decide whether to use 0.0821 or 8.314 for R? ›

The units of measurement being utilised affect the value of R. When dealing with energy units, molar amounts, and Kelvin temperature, the value 8.314 J/(molK) is utilised in SI units. In non-SI units, especially when dealing with litres, atmospheres, and mol K, the value 0.0821 L atm/mol K is utilised.

What is K in ideal gas law? ›

The relationship between them may be deduced from kinetic theory and is called the. n = number of moles. R = universal gas constant = 8.3145 J/mol K. N = number of molecules. k = Boltzmann constant = 1.38066 x 10-23 J/K = 8.617385 x 10-5 eV/K.

What is ideal gas law in physics definition? ›

ideal gas law, relation between the pressure P, volume V, and temperature T of a gas in the limit of low pressures and high temperatures, such that the molecules of the gas move almost independently of each other.

What is the ideal gas law in physics units? ›

In SI units, p is measured in pascals, V is measured in cubic metres, n is measured in moles, and T in kelvins (the Kelvin scale is a shifted Celsius scale, where 0.00 K = −273.15 °C, the lowest possible temperature).

What is an ideal gas does an ideal gas exist in Practice 2? ›

An ideal gas is a gas in which the molecules have no size and the force of attraction between the molecules is elastic. There are negligible intermolecular forces exist between the molecules. An ideal gas is purely hypothetical and such gases do not exist in reality.

What are ideal gas properties in physics? ›

The IDEAL gases take the shape of the container as a result of their compressibility, and so the volume of the container can be assumed to be the overall volume of the gas(es) inside. The IDEAL gases behave inertly, meaning that they are assumed to not react with each other.

Top Articles
10 Healthiest Subway Sandwiches, According to Dietitians
Craigslist En Brownsville Texas
Vegas X Vip.org
Smsgt Promotion List
Ssm Health Workday App
Express Pay Cspire
Craigslist Greencastle
Tate Sweat Lpsg
Log in or sign up to view
Saydel Botanica
Craigslist Free Stuff Columbus Ga
8x20, 8x40 Shipping containers storage container for rent or sale - general for sale - by dealer - craigslist
gameplay:shiny_pokemon_and_luck [PokéRogue Wiki]
Leicht Perlig Biography
Teacup Parti Yorkies For Sale Near Me
Sevita Sso Login
Fkiqx Breakpoints
Fireboy And Watergirl Advanced Method
Nextdoor Myvidster
Spectrum Store Downey Photos
El Puerto Harrisonville Mo Menu
Weather Radar Los Angeles Noaa
Craigslist Furniture By Owner Dallas
Stellaris Wargoal
Central Nj Craiglist
Scrap Metal Prices in Indiana, Pennsylvania Scrap Price Index,United States Scrap Yards
‘There’s no Planet B’: UNLV first Nevada university to launch climate change plan
When Is Moonset Tonight
8005607994
Resident Evil Netflix Wiki
Dez Juggs
Examination Policies: Finals, Midterms, General
Strange World Showtimes Near Twin County Cinema
Women On Twitch Go Without Makeup To Support A Fellow Streamer
Ucf Net Price Calculator
Saw X Showtimes Near Regal Ronkonkoma
General Kearny Inn Motel & Event Center
Bank Of America Financial Center Irvington Photos
My Scheduler Hca Cloud
Coacht Message Boards: A Comprehensive - Techbizcore
American Idol Winners Wiki
Directions To Pnc Near Me
Nailery Open Near Me
Tighe Hamilton Hudson Ma Obituary
This Meteorologist Was Wardrobe Shamed, So She Fought Back | Star 101.3 | Marcus & Corey
Rachaelrayshow Com Recipes
Delta Rastrear Vuelo
C-Reactive Protein (CRP) Test Understand the Test & Your Results
Sicilys Pizza Promo Code 40 Off
Rs3 Master Hidey Holes
Yvi Eulb Meaning In Latin
Lizzyboat African Market
Latest Posts
Article information

Author: Fr. Dewey Fisher

Last Updated:

Views: 6186

Rating: 4.1 / 5 (62 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Fr. Dewey Fisher

Birthday: 1993-03-26

Address: 917 Hyun Views, Rogahnmouth, KY 91013-8827

Phone: +5938540192553

Job: Administration Developer

Hobby: Embroidery, Horseback riding, Juggling, Urban exploration, Skiing, Cycling, Handball

Introduction: My name is Fr. Dewey Fisher, I am a powerful, open, faithful, combative, spotless, faithful, fair person who loves writing and wants to share my knowledge and understanding with you.